

SPATIAL AND TEMPORAL VARIATIONS OF ATLANTIC SURFCLAM (SPISULA SOLIDISSIMA) POPULATION DEMOGRAPHIC CHARACTERISTICS ALONG THE MIDDLE ATLANTIC BIGHT

Mauricio González Díaz*, Eileen E. Hofmann, John M. Klinck,
Daphne Munroe, Eric Powell, Andrew Scheld

*Contact: mgonz023@odu.edu

Acknowledgments:

BOEM

BUREAU OF OCEAN ENERGY MANAGEMENT

NORA DATA AVAILABILITY

Grant M19AC00016

- ❖ Background on Atlantic surfclam
- Data sets and analysis description
- Population model used to simulate surfclam biomass along the MAB
- Summary and further work

Objectives

- Background on Atlantic surfclam
- Data sets and analysis description
- Population model used to simulate surfclam biomass along the MAB
- Summary and further work

Objectives

Atlantic surfclam background

Map of the MAB region showing the distribution of Atlantic surfclam (shading) (from Hofmann et al. 2018, Journal of Shellfish Research)

- Benthic biomass dominant
- Important for local economy and ecology
- Consistent surveys from 1982 to 2011, and 2012 to 2019 (NEFSC)
- Observed changes in biomass at the southern locations

- Background on Atlantic surfclam
- Data sets and analysis description
- Population model used to simulate surfclam biomass along the MAB
- Summary and further work

Objectives

Survey data used in this research

von Bertalanffy equation fits to the survey data

 $K = 0.252 \text{ y}^{-1}$; $L_{\infty} = 165.794 \text{ mm}$

 $K = 0.262 \text{ y}^{-1}$; $L_{\infty} = 146.298 \text{ mm}$

$$L(a) = L_{inf} (1 - e^{-Ka})$$

- L(a) is the length of the clam at a certain age
- lacktriangle L_{inf} is the asymptotic length
- ❖ K is specific growth rate (y⁻¹)

von Bertalanffy equation fits to the survey data

 $K_{80s} = 0.300 \text{ y}^{-1}$; $L_{\infty 80s} = 152.601 \text{ mm}$

$$K_{90s} = 0.339 \text{ y}^{-1}; L_{\infty 90s} = 151.641 \text{ mm}$$

$$K_{00s} = 0.397 \text{ y}^{-1}$$
; $L_{\infty 00s} = 132.911 \text{ mm}$

 $K_{80s} = 0.229 \text{ y}^{-1}$; $L_{\infty 80s} = 168.982 \text{ mm}$

 $K_{90s} = 0.262 \text{ y}^{-1}$; $L_{\infty 90s} = 142.246 \text{ mm}$

 $K_{00s} = 0.286 \text{ y}^{-1}$; $L_{\infty 00s} = 142.092 \text{ mm}$

Relationship between maximum age and mortality rate (Hoening, 1983, Fishery Bulletin).

where Z is the constant instantaneous rate of mortality, and t_{max} is the maximum age found in the sample.

Temporal and Spatial variations

South to North reduction in mortality rates

South to North increase in asymptotic length

- Background on Atlantic surfclam
- Data sets and analysis description
- Population model used to simulate surfclam biomass along the MAB
- Summary and further work

Objectives

Population model for Atlantic sufclam

Model results: Population adjustment time

Adjustment time ~10 years

First reproductive cohort at 2 years since the start of the model

Model results: Sensitivity analysis

- Background on Atlantic surfclam
- Data sets and analysis description
- Population model used to simulate surfclam biomass along the MAB
- Summary and further work

Objectives

Summary

- Surfclam population rates changed from 1980s to 2000s
- Important population demographic parameters change in a latitudinal gradient
 - Southern MAB surfclam population is shrinking
 - Northern MAB surfclam population is expanding
 - Central MAB surfclam population present little change

Further work

Include the entire MAB

 Include effect of warming bottom temperatures

Include effect of modified habitat resulting from offshore wind farms

*Contact: mgonz023@odu.edu

Grant M19AC00016

